硕士生导师

当前位置: 太阳成集团tyc33455cc >> 师资队伍 >> 硕士生导师 >> 正文

刘静欣

日期:2021-03-03  来源:   点击:

姓名

刘静欣

性别

最高学位

博士

职称/职务

教授

研究方向

功能有机材料,超分子化学和配位化学

邮箱

jxliu411@ahut.edu.cn

学习工作经历

2011.1-至今 安徽工业大学太阳成集团tyc33455cc教授

2013.4-2014.5 美国迈阿密大学公派访问学者

2010.4-2013.1南京大学生命科学院博士后

2007.9-2010.12安徽工业大学太阳成集团tyc33455cc副教授

2004.7-2007.6厦门大学化学系博士

2001.9-2004.6贵州大学应用化学研究所硕士

主要科研项目及成果

主持国家自然科学基金面上项目:新型瓜环的合成及其对阴离子识别的应用No.: 20971002)

主持国家自然科学基金面上项目烷基链衍生物在瓜环基疏水空腔中的构象与应用(No.: 21371004)

主持中国博士后科学基金面上项目瓜环疏水空腔中的分子构象(No.: 20100481109)

主持安徽省自然科学基金面上项目:具有纳米孔洞结构的瓜环基超分子结构的可控组装与性能研究No.: 2008085MB36

主持安徽省高等学校科学研究重大项目: 瓜环基光致变色材料的合成、性质和应用研究No.: 2023AH040150

一作或通讯身份发表SCI论文90多篇,论文被引用2000多篇次。

近十年代表论文:

1. Chameleon-inspired supramolecular materials based on cucurbit[7]uril and viologens exhibiting full-color tunable photochromic behavior, Chem. Eng. J. 2024, 484, 149551.

2. Acid−base regulated inclusion complexes of β-cyclodextrin with 1-[2-(4-fluorophenyl)-2-oxoethyl]-4,4’-bipyridinium dichloride displaying multistimuli-responsive chromic behavior and photomodulable fluorescence, J. Mater. Chem. C. 2024, 12, 27642771.

3. A Supramolecular Host-Guest Hydrogel Based on g-Cyclodextrin and Carboxybenzyl Viologen Showing Reversible Photochromism and Photomodulable Fluorescence, ACS Appl. Mater. Interfaces. 2023, 15, 2479–2485.

4. Stimuli-Responsive Mechanically Interlocked Molecules Constructed from Cucurbit[n]uril Homologues and Derivatives, Chem. Soc. Rev. 2023, 52, 1428–1455.

5. Chaotropic Effect Driven Selective Anion Recognition: Exo-Binding of Cyclohexanocucurbit[5,6]uril with Hexafluorophosphate, Cryst. Growth Des. 2023, 23, 69096915.

6. Supramolecular inclusion complexes of b-cyclodextrin with bathochromic-shifted photochromism and photomodulable fluorescence enable multiple applications, Mater. Adv. 2023, 4, 52155223.

7. Supramolecular Inclusion Complexes Based on Cucurbit[7]uril and Triazine-Bridged Viologens Displaying Near-infrared Photochromism and Photomodulable Fluorescence, ACS Appl. Opt. Mater. 2023, 1, 18111818.

8. Inclusion Complexes of Cyclodextrins with 1-(4-Carboxybenzyl)-4-[2-(4-pyridyl)-vinyl]-pyridinium Chloride: Photochromism, Erasable Inkless Printing and Color Tuning, J. Phys. Chem. C 2022, 126, 18900–18906.

9. An Inclusion Complex of Cucurbit[7]uril with Benzimidazolyl Benzyl Viologen Showing Fluorescence and Photochromic Properties, Phys. Chem. Chem. Phys. 2022, 24, 25930–25936.

10. Solid-State Supramolecular Inclusion Complexes of b-Cyclodextrin with Carboxyphenyl Viologens Showing Photochromic Properties, J. Phys. Chem. C 2022, 126, 844–850.

11. Encapsulation of L-Valine, D-Leucine, and D-Methionine by Cucurbit[8]uril, CrystEngComm 2022, 24, 1035–1040.

12. Light-responsive molecular switch based on cucurbit[7]uril and 1,1'-bis(benzyl)-4-[2-(4-pyridyl)-vinyl]-pyridinium dibromide displaying aggregation emission, Org. Biomol. Chem. 2022, 20, 1253–1259.

13. Controllable synthesis of dodecamethylcucurbit[6]uril and its application in separating phenylenediamine isomers, Cryst. Growth Des. 2021, 21, 2993–2999.

14. Supramolecular frameworks constructed by exclusion complexes of symmetric dicyclohexanocucurbit[6]uril with benzene ring-containing guests, Cryst. Growth Des. 2021, 21, 2977–2985.

15. Recognition of glycine by cucurbit[5]uril and cucurbit[6]uril: A comparative study of exo- and endo-binding, Chin. Chem. Lett. 2021, 32, 2301–2304.

16. Detecting Pesticide Dodine by Displacement of Fluorescent Acridine from Cucurbit[10]uril Macrocycle, J. Agric. Food Chem. 2021, 69, 584–591.

17. Supramolecular Chemistry of Substituted Cucurbit[n]urils, Inorg. Chem. Front. 2020, 7, 3217–3246.

18. Selective Recovery and Detection of Gold with Cucurbit[n = 5–7]urils, Inorg. Chem. 2020, 59, 3850–3855.

19. Symmetrical-tetramethyl-cucurbit[6]uril-driven movement of cucurbit[7]uril gives rise to heterowheel [4]pseudorotaxanes, J. Org. Chem. 2020, 85, 3568–3575.

20. Selective recognition and determination of phenylalanine by a fluorescent probe based on cucurbit[8]uril and palmatine, Anal. Chim. Acta 2020, 1104, 164–171.

21. Outer surface interaction to drive cucurbit[8]uril-based supramolecular frameworks: possible application in gold recovery, Chem. Comm. 2019, 55, 14271–14274.

22. Lanthanide contraction effect and organic additive impact the coordination structures of lanthanide ions with symmetrical octamethyl-substituted cucurbit[6]uril ligand, CrystEngComm 2019, 21, 5641–5649.

23. Multiple noncovalent interactions constructed polymeric supramolecular crystals: recognition of butyl viologen by para-dicyclohexano cucurbit[6]uril and α,α’,δ,δ’-tetramethyl -cucurbit[6]uril, Org. Chem. Front. 2017, 4, 2422–2427.

24. Endo/exo binding of alkyl and aryl diammonium ions by cyclopentanocucurbit[6]uril, Org. Chem. Front. 2017, 4, 1799–1805.

25. Supramolecular complexes of α,α’,δ,δ’-tetramethyl -cucurbit[6]uril binding with enantiomeric amino acids, CrystEngComm 2017, 19, 2168–2171.

26. Host-guest complexation of cucurbit[8]uril with two enantiomers, Sci. Rep. 2017, 7, 44717.

27. Encapsulation of alkyldiammonium ions within two different cavities of twisted cucurbit[14]uril, Chem. Comm. 2016, 52, 2589−2592.

28. Host−guest complexation of di-cyclohexano-cucurbit[6]uril and hexa-cyclohexano -cucurbit[6]uril with alkyldiammonium ions: A comparative study. Org. Biomol. Chem. 2016, 14, 674−679.

29. Aniline-containing guests recognized by α,α’,δ,δ’- tetramethyl -cucurbit[6]uril host, Sci. Rep. 2016, 6, 39057.

30. The Binding Interactions between Cyclohexano-cucurbit[6]uril and Alkyl Viologens Give Rise to a Range of Diverse Structures in the Solid and the Solution Phases, J. Org. Chem. 2015, 80, 10505−10511.

31. Encapsulation of haloalkane 1-(3-Chlorophenyl)-4 -(3-chloropropyl)-piperazinium in symmetrical α,α’,δ,δ’-tetramethyl-cucurbit[6]uril, Phys. Chem. Chem. Phys. 2015, 17, 8618–8621.

32. Mixed behavior of p-phenylenediaminium guest binding with inverted cucurbit[6]uril host, Org. Biomol. Chem. 2015, 13, 8330–8334.

33. Extended and contorted conformations of alkanediammonium ions in symmetrical α,α’,δ,δ’-tetramethyl-cucurbit[6]uril cavity, J. Org. Chem. 2014, 79, 11194–11198.

34. Coordination of Ln3+ in ortho-tetramethyl -substituted cucurbituril supramolecular assemblies formed in the presence of nitrate cadmium: potential applications for isolation of heavier lanthanides, CrystEngComm 2014, 16, 10674–10680.